Multiple Solutions of Riemann Type of Functional Equations

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

On meromorphic solutions of certain type of difference equations

‎We mainly discuss the existence of meromorphic (entire) solutions of‎ ‎certain type of non-linear difference equation of the form‎: ‎$f(z)^m+P(z)f(z+c)^n=Q(z)$‎, ‎which is a supplement of previous‎ ‎results in [K‎. ‎Liu‎, ‎L. Z‎. ‎Yang and X‎. ‎L‎. ‎Liu‎, ‎Existence of entire solutions of nonlinear difference‎ ‎equations‎, ‎Czechoslovak Math. J. 61 (2011)‎, no. 2, ‎565--576‎, and X‎. ‎G‎. ‎Qi‎...

متن کامل

Orthogonal stability of mixed type additive and cubic functional equations

In this paper, we consider orthogonal stability of mixed type additive and cubic functional equation of the form $$f(2x+y)+f(2x-y)-f(4x)=2f (x+y)+2f(x-y)-8f(2x) +10f(x)-2f(-x),$$ with $xbot y$, where $bot$  is orthogonality in the sense of Ratz.

متن کامل

Cm Solutions of Some Functional Equations of Associative Type

In this note we give the continuous solutions of some functional equations of associative type that are strictly monotonic in each variable. Neither solvability nor differentiability conditions will be assumed.

متن کامل

Multiple periodic solutions to a class of second-order nonlinear mixed-type functional differential equations

where τ, σ , and c are constants in R with τ ≥ 0, σ ≥ 0, |c| < 1, g(t,x) is a T(> 0)-periodic function in t > 0, and for an arbitrary bounded domain E ⊂ R, g(t,x) is a Lipschitz function in [0,T] × E, p ∈ C(R,R), p(t +T) = p(t), and ∫ T 0 p(t)dt = 0. They obtained some sufficient conditions to guarantee the existence, at least a T-periodic solution, for this system. But, for the existence of pe...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: British Journal of Mathematics & Computer Science

سال: 2016

ISSN: 2231-0851

DOI: 10.9734/bjmcs/2016/26322